Recent IceCube Results on High Energy Neutrinos

Evidence for High-Energy Extraterrestrial Neutrinos

TeV Neutrinos

Observing astrophysical neutrinos allows conclusions about the acceleration mechanism

Neutrinos from cosmic ray interactions in:

- Atmosphere
- Cosmic Microwave Background
- Gamma Ray Bursts (Acceleration Sites)
- Active Galactic Nuclei (Acceleration Sites)

• 5

Why Neutrinos?

Neutrinos are ideal astrophysical messengers

- Travel in straight lines
- Very difficult to absorb in flight

Interesting Neutrinos above 1 TeV

- Atmospheric neutrinos (π/K)
 - dominant < 100 TeV
- Atmospheric neutrinos (charm)
 - "prompt" ~ 100 TeV
- Astrophysical neutrinos
 - maybe dominant > 100
 TeV
- Cosmogenic neutrinos
 - $> 10^6 \text{ TeV}$

Deployed in the deep glacial ice at the South Pole

- **▶ 5160 PMTs**
- ► 1 km³ volume
- ▶ 86 strings
- ► 17 m PMT-PMT spacing per string
- 125 m string spacing
- Completed 2010

Neutrinos are detected by looking for Cherenkov radiation from secondary particles (muons, particle showers)

Neutrinos are detected by looking for Cherenkov radiation from secondary particles (muons, particle showers)

Neutrino Event Signatures

Signatures of signal events

CC Muon Neutrino

$$\nu_{\mu} + N \rightarrow \mu + X$$

track (data)

factor of ≈ 2 energy resolution < 1° angular resolution

Neutral Current / Electron Neutrino

≈ ±15% deposited energy resolution ≈ 10° angular resolution (at energies ≥ 100 TeV)

time

CC Tau Neutrino

"double-bang" and other signatures (simulation)

(not observed yet)

Backgrounds and Systematics

Backgrounds:

- Cosmic Ray Muons
- Atmospheric Neutrinos

Largest Uncertainties:

- Optical Properties of Ice
- Energy Scale Calibration
- Neutral current / ν_e degeneracy

A bundle of muons from a CR interaction in the atmosphere (also observed in the "IceTop" surface array)

Studying Neutrinos

Many possible analyses!

High-energy:

- Point-source searches looking for clustering in the sky
- Diffuse fluxes above the atmospheric neutrino background
- Gamma-ray bursts searches (many models excluded by IceCube: Nature 484 (2012))
- Ultra-high energy "GZK" neutrinos from proton interactions on the CMB

Low energy:

Neutrino oscillations with IceCube and ANTARES

Others:

• Dark Matter / WIMPs, ...

The High-Energy Tail

Searching for a signal above the atmospheric neutrino background

Signals and Backgrounds

Signal

- ▶ Dominated by showers
 (~80% per volume) from
 oscillations
- High energy (benchmark spectrum is typically E-2)
- Mostly in the Southern Sky due to absorption of highenergy neutrinos in the Earth

Background

- Track-like events from Cosmic Ray muons and atmospheric ν_{μ}
- ► Soft spectrum (E^{-3.7} E^{-2.7})
- Muons in the Southern Sky, neutrinos in from the North

Observables

Different observables probe different properties

Spectral slope

• separate extraterrestrial flux from atmospheric, accelerator properties

Position of possible cutoff in energy

 accelerator properties, maybe different population of sources above/below CR knee?

Flavor composition

• physics of production process, discrimination against backgrounds

Zenith distribution

comparison to backgrounds

Full arrival direction

• source locations once significant clustering is observed (skymap!)

Hint in upgoing muons

Study using the "IC59" partial detector during construction: 1.8\sigma

Another Hint in Shower

Study using the "IC40" partial detector during construction: 2.4σ

GZK Neutrino Analysis

Simple search to look for extremely high energies (10⁹ GeV) neutrinos from proton interactions on the CMB

Upgoing muons

- Always neutrinos
- Background: atm. neutrinos
- High threshold (1 PeV)

Downgoing muons (VHE)

- Cosmic Ray muon background
- Very high threshold (100 PeV)

Results

Appearance of ~1 PeV cascades as an at-threshold background

- Two very interesting events in IceCube (between May 2010 and May 2012)
 - shown at Neutrino '12
 - 2.8σ excess over expected background in GZK analysis
 - paper submitted and on arXiv (arXiv:1304.5356)
- There should be more
 - GZK analysis is only sensitive to very specific event topologies at these energies

Directional Resolution for Showers

Shower directions reconstructed from timing profile

Things We Know

- At least two PeV neutrinos in a 2-year dataset
- **Events are downgoing**
- Seems not to be GZK (too low in energy)
- Higher than expected for atmospheric background
- Spectrum seems not to extend to much higher energies
 - unbroken E⁻² would have made 8-9 more above 1 PeV

Things We Wanted to Learn

- **Isolated events or tail of spectrum?**
- Spectral slope/cutoff
- Flavor composition
- Where do they come from?
- Astrophysical or air shower physics (e.g. charm)?
- **Need more statistics to answer all of these!**

High-Energy Contained Vertex Search

How we found more...

Follow-up Analysis

Specifically designed to find these contained events. Analysis of dataset taken from May 2010 to May 2012 (662 days of livetime)

- **Explicit contained search at high** energies (cut: Q_{tot}>6000p.e.)
- 400 Mton effective fiducial mass
- Use atmospheric muon veto
- Sensitive to all flavors in region above 60TeV
- Three times as sensitive at 1 PeV
- **Estimate background from data**

Background 1 - Atmospheric Muons

Mostly incoming atmospheric muons sneaking in through the main dust layer

- Reject incoming muons when "early charge" in veto region
- Control sample available: tag muons with part of the detector - known bkg.
- 6±3.4 muons per 2 years (662 days)

Background 1 - Atmospheric Muons

What's "early charge"?

Throughgoing muon

Total detector

Contained cascade

Veto region - barely contained

Veto region - well contained cascade

Estimating Muon Background From Data

Use known background from atmospheric muons tagged in an outer layer to estimate the veto efficiency

- Add one layer of DOMs on the outside to tag known background events
 - Then use these events to evaluate the veto efficiency
- Avoids systematics from simulation assumptions/ models!
- Can be validated at charges below our cut (6000 p.e.) where background dominates

Background 2 - Atmospheric Neutrinos

Very low at PeV energies

- Typically separated by energy
- Very low at PeV energies (order of 0.1 events/year)
- Large uncertainties in spectrum at high energies
- 4.6^{+3.7}-1.2 events in two years (662 days)
- Rate accounts for events vetoed by accompanying muon from the same air shower in the Southern Sky
- Baseline model: Enberg et al. (updated with cosmic-ray **Knee model)**

Vetoing Atmospheric Neutrinos

- **Atmospheric neutrinos are made** in air showers
- For downgoing neutrinos, the muons will likely not have ranged out at IceCube
- **Downgoing events that start in** the detector are extremely unlikely to be atmospheric

Schönert et al., arXiv:0812.4308

Note: optimal use requires minimal overburden to have the highest possible rate of cosmic ray muons!

Effective Volume / Target Mass

Fully efficient above 100 TeV for CC electron neutrinos About 400 Mton effective target mass

What Did We Find?

26 more events!

What Did We Find?

26 more events in the 2 years of IceCube data (2010/2011 season: "IC79"&"IC86")

28 events observed!

- 26 new events in addition to the two 1 PeV events!
- Track events (x) can have much higher neutrino energies than deposited energies
 - also true on a smaller scale for shower events for all signatures except charged-current v_e
- Background: 10.6^{+5.0}-3.6
 - (or 12.1±3.4 for reference neutrino background model)

(preliminary significance w.r.t. reference bkg. model: 3.3 σ for 26 events; 4.1σ for 28 events)

What Did We Find?

Some examples

Event Distribution in Detector

Uniform in fiducial volume

- **Backgrounds from** atm. muons would pile up preferentially at the detector boundary
- No such effect is observed!

Systematic Studies and Cross-Checks

- Systematics were checked using an extensive perevent re-simulation
 - varied the ice model and energy scale within uncertainties for each iteration and repeated analysis
- Different fit methods applied to the events show consistent results

Tracks:

- good angular resolution $(< 1 \deg)$
- inherently worse resolution on energy due to leaving muon

Showers:

- larger uncertainties on angle (about 10°-15°)
- good resolution on deposited energy (might not be total energy for NC and v_{τ}

Charge Distribution

- Fits well to tagged background estimate from atmospheric muon data (red) below charge threshold (Qtot>6000p.e.)
- **Hatched region includes** uncertainties from conventional and charm atmospheric neutrino flux (blue)

Energy Spectrum

Compatible with benchmark E-2 astrophysical model

- Harder than any expected atmospheric background
- Merges well into background at low energies
- Potential cutoff at about 2-5PeV
 - at 1.6^{+1.5}_{-0.4} PeV when fitting a hard cutoff
- Best fit:

Fluxes and Limits

Fluxes normalized to 3 flavors except atm. neutrinos

- Compatible with isotropic flux
- Events absorbed in Earth from Northern Hemisphere
- Minor excess in south compared to isotropic, but not significant

- Compatible with isotropic flux
- Events absorbed in Earth from Northern Hemisphere
- Minor excess in south compared to isotropic, but not significant

Skymap / Clustering

No significant clustering observed

Conclusions

Stay tuned!

- > 28 events with energies above ≈ 50 TeV found in two years of IceCube data (2010 & 2011)
- Increasing evidence for high-energy component beyond the atmospheric spectrum
- Inconsistent at the 4σ level with standard background assumptions
- Less clear what it is compatible with astrophysical explanations
- More data coming soon!

